Neuronal Network of C. elegans: from Anatomy to Behavior
نویسنده
چکیده
منابع مشابه
Neuronal aging: learning from C. elegans
The heterogeneity and multigenetic nature of nervous system aging make modeling of it a formidable task in mammalian species. The powerful genetics, simple anatomy and short life span of the nematode Caenorhabditis elegans offer unique advantages in unraveling the molecular genetic network that regulates the integrity of neuronal structures and functions during aging. In this review, we first s...
متن کاملStructural Properties of the Caenorhabditis elegans Neuronal Network
Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent....
متن کاملA stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans
Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a la...
متن کاملHypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans.
Rapid behavioral responses to oxygen are generated by specialized sensory neurons that sense hypoxia and hyperoxia. On a slower time scale, many cells respond to oxygen through the activity of the hypoxia-inducible transcription factor HIF-1. Here, we show that in the nematode Caenorhabditis elegans, prolonged growth in hypoxia alters the neuronal circuit for oxygen preference by activating the...
متن کاملCircuit Optimization Predicts Dynamic Network for Chemosensory Orientation in the Nematode C. elegans
The connectivity of the nervous system of the nematode Caenorhabditis elegans has been described completely, but the analysis of the neuronal basis of behavior in this system is just beginning. Here, we used an optimization algorithm to search for patterns of connectivity sufficient to compute the sensorimotor transformation underlying C. elegans chemotaxis, a simple form of spatial orientation...
متن کامل